

About us

Many years of experience

For almost 50 years, we have been advising machine manufacturers as partners for compact coupling systems. Our experience in power transmission has given us extensive know-how in many industries, as we know and understand the most varied applications, and this allows us to optimally support you. Our products are always a safe choice. No matter if it is a standard product, a coupling tailored to a specific industry, or a coupling solution designed for a specific application.

Products with high technical functionality

Our product range includes torsionally stiff couplings which stand out due to their compactness and high functionality. Their unique technical features offer technical users a variety of practice-oriented advantages. Renowned OEMs from all areas of machinery manufacturing are among our partners.

customers in the design and implementation of a project results in coupling solutions precisely tailored to application-specific requirements. Comprehensive counselling, FEM analyses, prototype definition and production of Rapid Prototyping Models, as well as confirmation of the calculated design data on modern test

Your wishes are our motivation -With us, new impulses from the market stream into the ongoing further development of our products. Individual counselling Closeness to customers Tailored coupling systems Industry know-how Drive optimisation

Content

Introduction

Technique Synchronisation, even with high displacement No restoring forces Torsionally stiff and high torque transmission High offset with compactness 5

6 - 8

14 - 20

- Product line-up/Material 9
- Hub versions/Combinations 10 11
- Selection sequence 12 13
- Standard/Compact Plus

Technical data

- Technical data21Dynamic
- Installation instructions 22 23
- Application-specific coupling solutions 24 25
- Applications26 27Paper machinesHandling technologyVacuum coating systemsMachine tools and much more

Offset compensation free of restoring forces even in the narrowest gaps

The Semiflex coupling is a torsionally stiff and restoring-force-free precision coupling. In addition to the compensation of axial and angular displacements, it provides high radial displacement capacity together with compact design.

The displacement compensation takes place without any restoring forces and via the unique system of two pairs of 90°-offset parallel links. The angle synchronisation of the connected shafts is retained at all times.

Technique

Synchronisation, even with high displacement

The Semiflex transmits torque via two pairs of 90°-offset parallel links. They connect the input and output disc with the centre disc. In case of aligning shafts, all three discs are also in an aligned position. In case of occurring radial displacement, the links move parallely as one group and let the centre disc radially divert by a corresponding extent. Since each pair of the coupling links always remains internally parallel to each other, the connected shafts remain totally synchronized without phase shift and consequently absolute constant angular velocity.

Picture: Input disc (blue) connected to centre disc via parallel pair of links 1; Output disc (green) connected to centre disc via parallel pair of links 2

Radial displacement of the input disc through force-free swivelling movement of pair of links 1

No restoring forces

Needle bearings are located in the coupling links. As a result, the coupling links can rotate on the bolts located in the discs. The parallel shift compensation thus occurs through a pure force-free swivelling movement of the link pairs. The Radial displacement of the output through force-free swivelling movement of pair of links 2

Semiflex coupling correspondingly transmits pure torque without negative restoring forces for machine parts adjacent to bearings.

High offset with compactness

In addition to axial and angular displacement, Semiflex compen-

Both pairs of links swivel; in so doing, they remain always parallel to each other, which ensures synchronisation regardless of the radial displacement height

sates for high radial displacement of several millimetres.

For this purpose, the Semiflex coupling requires only minimum axial installation space and has therefore a very compact design.

Offset variable in operation

The radial offset can be infinitely varied as required and set to any value within the relevant permissible values. The drive and power take-off synchronisation is always ensured.

Torsionally stiff and high torque transmission

The components of Semiflex are made of high-quality steel with

high tensile strength and tempered steel or high-strength aluminium (Dynamic line). It offers high torsional stiffness as an all-metal coupling and is designed for high torque transmission.

Different hub forms, in any combination

The program offers 6 different frictional and interlocking hub designs. They can be combined as

required and are thus precisely and individually adapted to the specific requirements.

Maintenance-free

Semiflex is lubricated for life and is maintenance-free in continuous operation.

Compact without limitations

A design advantage of Semiflex are its very compact dimensions. Here, there is no dependence between the amount of radial offset values and the overall length. For couplings which compensate for

offset with bending elastic behaviour, the permissible offset significantly decreases with shorter designs.

Semiflex thus gives the user a space-saving design with no restrictions on the function values.

With extremely critical requirements regarding the available axial space, the pure functional element of Semiflex can be integrated directly into the application without hubs.

Product line-up

Standard F

The Standard line combines performance, compact design and great displacement options. The Standard line is available for nominal torgues up to 14,500 Nm.

Compact Plus C

For axially extremely confined installation space - up to 25% shorter length compared to the Standard line, while maintaining performance values and displacement options. The Compact Plus line is available for nominal torques up to 7,040 Nm.

Dynamic D

The lightweight aluminium line with low mass inertia - the line designed for applications with high angular accelerations. The Dynamic line is available for nominal torques up to 180 Nm.

Standard fitting with clamping hubs.

Material

Different hub forms, in any combination

All frictional and keyed hub designs can be combined as required depending on size and can thus be precisely adapted to your specific requirements.

That is, you can, for example, select a clamping hub design on

the drive side (hub form 3) and a tions. Examples are listed on pasplit clamping hub on the output side (hub form 2) in order to quickly replace a machine part and remove it radially.

Other customised hub designs not listed here are available as opges 24-25,"Custom coupling designs". Our application engineers will be pleased to advise you on all these subjects.

Serial hub versions

Hub version 1 Clamp hubs Backlash-free shaft connection

Hub version 2 Split clamp hub Backlash-free shaft connection, radial mounting

Hub version 3 Locking assemble Backlash-free shaft connection, high friction torque

Hub version 5 Flange-mounting Short-length integration into customer-specific parts

Hub version 6 Standard hub with keyway Form-fit shaft connection with keyway and set screw

Hub version 7 Internal hub Short-length variant of hub version 6

Due to the variety of our different hub versions and resulting hub combinations, following technical data sheets just contains Semiflex with identical hub versions both sides.

Selection sequence

The selection of the Semiflex is determined by the various performance parameters. These include torque, speed and occurring displacement. The influences of these parameters are described below:

Selection according to torque

Calculation of the design torque T_{D} : Please multiply your continuous torque T_{A} by the required performance factor F and the required service factor to get the design torque.

 $T_{D} = T_{A} \times F \times K$

Please choose your operating speed of your application combined with the required nominal rating life in h*.

	Service	factor K	
Uniform	Light shocks	Medium shocks	Heavy shocks
		Jun	
1,0	1,25 - 1,75	1,75 - 2,25	2,25 - 2,75

Select a coupling whose rated torque $T_{_{KN}}$ is larger than the calculated dimensioning torque:

 $T_{KN} > T_{D}$

Make sure that the maximum torque of coupling T_{Kmax} is not exceeded *Nominal rating life - the service life recommendation for the coupling needle bearing, expressed in the number of operating hours which a bearing can complete before the first signs of material fatigue occur.

Required rating life = 10.000 h

Backlash-free shaft connection according

· Shaft diameter ø35 mm

to cyclic operation

Selection example

Application: Roller feed for processing of different maierials

Technical datas

- \cdot T_A nenn (continuous torque rating of the application) = 145 Nm \cdot Operating speed n = 200 min⁻¹
- T_A max (maximum torque rating) = 350 Nm (may occur during emergency stop)
- Radial displacement = Up to 2 mm during operation depending
 on thickness of the material
- During downtime for maintenance reasons or washdowns, roller is lifted up to 10 mm.

Required service factor K = 1,5Performance factor F = 2

Selection of the coupling size (torque, radial displacement)

 $T_{_{\rm D}} = T_{_{\rm A}} \times F \times K$ $T_{_{\rm D}} = 145 \text{ Nm} \times 1,5 \times 2$ $T_{_{\rm D}} = 435 \text{ Nm}$

Please select a coupling size that has a continuous torque $\rm T_{\rm \scriptscriptstyle KN}$ rating greater than 435 Nm.

F 440.11 ø35 ø35

Maximum torque rating TKmax of the coupling with 920 Nm exceeds Ta max of the application (350 Nm).

Size F 440 has a radial misalignment capacity of 3 mm. For maintenance reasons, washdowns the maximum radial displacement capacity of the coupling is 12 mm.

Relocation

The coupling has a high radial offset capacity. It is also able to compensate for occurring axial and angular displacement. In the event of the simultaneous occurrence of several combined types of offset, every single one may not achieve its maximum value.

They must be aligned in such a way that the sum of the actual offset percentages does not exceed 100%.

Radial offset- speed

The radial offset figures mentioned in this catalogue are in a mid range.

Fundamentally, higher speeds lead to a reduction of the possible radial offset; conversely, higher radial offset values than those specified in the catalogue can be realised for applications with low speeds.

Example: The Semiflex Standard F 230 with a specified radial displacement capacity of 2 mm allows a radial shaft offset of up to 10 mm at low speed, e.g. in creep feed mode.

Note: This offset option applies by default to the Semiflex Standard series. For the Compact Plus and Dynamic lines, please query our application engineers.

Environmental conditions

Semiflex units are delivered in turnkey condition and are lubricated for life in normal ambient conditions. Dirt, fibres, etc. should be kept away from the coupling, as they may adversely affect the lubricating effect in the bearings (foreign particle, dust and dirt may cause abrasive wear; fibres create a negative effect on the quantity of grease and its effect). In addition, the couplings can be optionally equipped with additional gaskets. The couplings are suitable for operating temperatures up to +120°C. For higher temperature ranges or additionally occurring mediums such as acids, please query our application engineers.

Hub version 1 - Clamp hub

Standard F

Specifications

								To	rque	M	lisalignmer	nt				
Size	D	R	L	L ₁	Y	Μ	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	C _T
	mm	mm	mm	mm	mm		mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
F 45	50	52	60	16	17,5	M6	22	45	71	2	1	1	0,5	2	2.500	8
F 70	70	70	68	0.0	04.5	MO	40	70	110		4	4	1	8,4	2.100	10
C 70	70	12	59	20	24,5	IVI8	42	70	112	2			1,1	8,9	1.700	13
F 230	00	0.4	104	07.5	0.0	MIO	50	000	400	0	-	4	2,7	34	1.450	50
C 230	90	94	88	27,5	30	IVITO	46	230	460	2			3	36,8	1.150	53
F 265	100	104	104	07.5	24	M10	55	265	520	0	-1	-1	3,2	50,1	1.350	61
C 265	100	104	88	27,5	34	IVIIZ	55	205	550	2			3,4	54,2	1.100	01
F 320	100	104	104	07.5	4.4	M10	70	220	625	0	-1	-	4,1	100,4	1.250	70
C 320	120	124	88	27,5	44	IVIIZ	10	320	035	3			4,2	104,8	1.000	13
F 440	100	100	143	38	32	M12	40	440	920	3	1	1	5	74	1.150	105
F 575	100	120	143	20	40	M10	60	575	1 0 0 0	2	-1	-	6,5	147	1.050	140
C 575	120	120	120,5	30	40	IVITZ	50	375	1.220	3			6,9	155	850	140

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter

R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_T = Torsional stiffness, m= Mass, J= Moment of inertia

Bore diameters

Size								d r	nm							
	12	14	16	18	20	22	24	28	30	32	35	40	42	44	48	50
F 45					-	-										
F 70, C 70					-	-		-								
F 230, C 230						-		-					-	-		
F 265, C 265													-	-		
F 320, C 320							-							-		
F 440												-				
F 575, C 575													=	-	-	-

Combinations of different bore diameters are possible. Bore diameters are equipped with keyway according to DIN 6885/1 as standard. Additional bore diameters as shown in the table are available on special request as well.

Ordering example:

Ordering example:

F 70.11 Ø16 Ø20

Semiflex Standard, size 70, bore 16 mm, 20 mm

C 70.11 Ø16 Ø20

Semiflex Compact Plus, size 70, bore 16 mm, 20 mm

Hub version 2 - Split clamp hub

Standard F

Compact Plus C

Specifications

								To	rque	N N	lisalignmer	nt				
Size	D	R	L	L ₁	Y	М	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	C _T
	mm	mm	mm	mm	mm		mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
F 70	70	70	68	20	10	MO	40	70	110		1	-1	1	8,4	2.100	10
C 70	10	12	59	20	10	IVIO	42	10	112	2			1,1	8,9	1.700	13
F 230	00	04	104	27.5	22	M10	50	230	460	2	1	1	2,7	34	1.450	53
C 230	50	54	88	21,5	22	IVIIO	46	230	400	2	1		3	36,8	1.150	55
F 265	100	104	104	07.5	25	M10	55	065	E20	0	1	1	3,2	50,1	1.350	61
C 265	100	104	88	27,5	20	IVIIZ	55	205	550	2			3,4	54,2	1.100	01
F 320	100	104	104	07.5	20	M10	70	220	625	0	-1	-1	4,1	100,4	1.250	70
C 320	120	124	88	27,5	30	IVIIZ	70	320	035	3			4,2	104,8	1.000	13
F 575	120	120	143	20	24	M10	60	675	1 000	0	-1	1	6,5	147	1.050	140
C 575	120	120	120,5	50	24	IVIIZ	50	575	1.220	3			6,9	155	850	140

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_{T} = Torsional stiffness, m= Mass, J= Moment of inertia

Bore diameters

Size						d r	nm					
	12	14	16	18	20	22	24	28	30	32	35	40
F 70, C 70												
F 230, C 230					-	-	-	-	-			
F 265, C 265												
F 320, C 320												
F 575, C 575									-	-	-	

Combinations of different bore diameters are possible. Bore diameters are equipped with keyway according to DIN 6885/1 as standard. Additional bore diameters as shown in the table are available on special request as well.

Ordering example:

Ordering example:

C 70.22 Ø16 Ø20

Semiflex Compact Plus, size 70, bore 16 mm, 20 mm

F 70.22 Ø16 Ø20

Semiflex Standard, size 70, bore 16 mm, 20 mm

www.schmidt-kupplung.com

Hub version 3 - Locking-assembly

Standard F

Compact Plus C

Specifications

									Tor	que	M	isalignmer	nt				
Size	D	R	L	L ₁	Х	W	Р	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	C _T
	mm	mm	mm	mm	mm	mm	mm	mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
F 230	00	04	116	01	15	74	76	50	220	460	0	1	-1	3,1	32,4	1.450	50
C 230	90	94	100	21	15	58	70	46	230	400	2	1		3,2	34,3	1.150	- 55
F 265	100	104	116	10	15	74	66	FF	065	E 2 0	0	-	-1	3,2	37,1	1.350	61
C 265	100	104	100	19	15	58	00	55	200	530	2			3,4	41,2	1.100	01
F 320	100	104	116	01	15	74	76	70	200	COF	0	-	-1	4,5	77,1	1.250	70
C 320	120	124	100		15	58	70	70	320	030	3			4,6	81,5	1.000	13
F 440	100	100	116	19	15	101	66	40	440	920	3	1	1	5,6	79	1.150	105
F 575	100	100	151	05	17	101	06	60	EZE	1 000	0	-	-1	6,8	126	1.050	140
C 575	120	120	128,5	25	17	78,5	96	50	5/5	1.220	3			7,2	134	850	140
F 725	140	140	161	20	0.0	101	445	70	705	1 500	0	-	-1	9,9	248	1.000	175
C 725	140	140	138,5	30	23	78,5	115	70	120	1.530	3			10,5	270	800	1/5
F 830	100	100	161	0.0	00	101	445	00	000	4 765	4	4	-	11,6	360	950	0.01
C 830	160	160	138,5	30	23	78,5	115	90	030	1.700	4			12	381	750	201
F 1120	140	143	188	30	17	134	115	55	1.120	2.730	3	0,8	1	12	295	850	313
F 1370	150	100	194	20	0.0	134	445	70	1.070	2.240	0	0.0	-1	15,5	505	800	202
C 1370	158	103	170	30	23	110	115	70	1.370	3.340	3	0,8		16	530	650	363

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter

R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_T = Torsional stiffness, m= Mass, J= Moment of inertia, X= Mounting space, W= Coupling basis

Bore diameters

Size					d mm				
	25	28	30	32	35	40	42	45	50
F 230, C 230	-								
F 265, C 265									
F 320, C 320	=		=						
F 440									
F 575, C 575			=	=		=			
F 725, C 725							=		=
F 830, C 830							=	=	=
F 1120			=	=	=	=			
F 1370, C 1370							=	=	=

Combinations of different bore diameters are possible. Shown bore diameters are standard bores. Additional bore diameters as shown in the table are available on special request as well.

Ordering example:

F 265.33 Ø30 Ø30

Ordering example:

C 265.33 Ø30 Ø30 Semiflex Compact Plus, size 265, bore 30 mm, 30 mm

Semiflex Standard, size 265, bore 30 mm, 30 mm

wow.schmidt-kupplung.com

Hub version 3 - Locking-assembly

Standard F

wp⊘ B ОØ ФÞ P Х W L 1 L

Compact Plus C

Specifications

									Tor	que	M	isalignmer	nt				
Size	D	R	L	L ₁	X	W	P	d _M	T _{KN}	T _{Kmax}	radial*	angular °	axial	m	J ka cm ²	n _{max} 1/min	C _T
														Ng	Ng chi	1711111	rad
F 1580	100	102	202	24	04	134	100	00	1 5 9 0	2015	4	0.0	4	19	795	750	441
C 1580	100	103	178	34	24	110	120	90	1.560	3.043	4	0,0		19,5	835	600	441
F 2010	158	163	202	34	24	155	120	70	2.010	4.915	4	0,7	1	18	610	750	563
F 2390	100	100	235	40	20	155	155	00	2 200	E 955	4	0.7	-	25,5	1.110	700	671
C 2390	100	103	207	40	30	127	155	90	2.390	5.655	4	0,7		27	1.195	550	071
F 2700	200	202	235	40	20	155	155	105	2 700	6 600	E	0.5	- 1	30	1.540	650	756
C 2700	200	203	207	40	30	127	155	105	2.700	0.000	5	0,5		30,5	1.600	500	750
F 4220	200	200	276	40	30	196	155	100	4.220	11.300	5	0,3	2	33	1.725	600	1.295
F 5620	250	250	284	4.4	21	196	170	140	5 620	15.050	6	0.2	0	49	3.975	550	1 705
C 5620	250	250	240	44	31	152	170	140	5.020	15.050	0	0,3	2	51,5	4.250	450	1.720
F 7040	200	200	296	50	20	196	105	100	7.040	10.040	6	0.0		66	7.700	500	0.150
C 7040	300	300	252	50	30	152	160	190	7.040	10.040	0	0,3	2	75,5	8.900	400	2.159
F 7500	300	300	259	52	30	155	197	150	7.500	18.800	6	0,2	1	67	6.700	400	2.120
F 9750	350	350	267	56	30	155	215	150	9.750	24.100	6	0.2	1	89	11.900	400	2.760
F 14500	350	350	326	65	30	196	230	180	14.500	38.000	6	0,2	2	97	14.400	300	4.350

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_{T} = Torsional stiffness, m= Mass, J= Moment of inertia, X= Mounting space, W= Coupling basis

Size								d mm							
	50	55	60	65	70	75	80	85	90	95	100	105	110	115	120
F 1580, C 1580															
F 2010															
F 2390, C 2390			-												
F 2700, C 2700															
F 4220			-												
F 5620, C 5620															
F 7040, C 7040								-							
F 7500															
F 9750															
F 14500															

Bore diameters

Shown bore diameters are standard bores. Additional bore diameters as shown in the table are available on special request as well.

Ordering example:

F 2390.33 Ø60 Ø70

Semiflex Standard, size 2390, bore 60 mm, 70 mm

Ordering example:

C 2390.33 Ø60 Ø70

Semiflex Compact Plus, size 2390, bore 60 mm, 70 mm

Hub version 5 - Hub for flanging

Standard F

Compact Plus C

Specifications

									Ior	que	M	Isalignmer	nt				
Size	D	R	L	L ₁	d	F	Μ	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	CT
	mm	mm	mm	mm	mm	mm		mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
F 45	50	52	44	8	22	35	3xM6	22	45	71	2	1	1	0,4	1	2.500	8
F 70	70	70	44		05	56	22/16	40	70	110	0	-1	-1	0,6	5	2.100	10
C 70	10	12	35	0	20	50	SAIVIO	42	10	112	2	1		0,7	5	1.700	15
F 230	00	0.4	74	10.5	AE	70	20110	50	000	460		-	-	1,6	20	1.450	50
C 230	90	94	58	12,5	45	70	SXIVITU	46	230	400	2			1,8	22	1.150	53
F 265	100	104	74	10.5	AE	70	20110	FF	065	500		-	-	2	31	1.350	61
C 265	100	104	58	12,5	45	70	SXIVITU	55	200	530	2			2,2	34	1.100	
F 320	100	104	74	10.5	50	0.0	0.1110	70	000	005	0	-	4	2,9	64	1.250	70
C 320	120	124	58	12,5	50	96	SXIVITU	70	320	035	3			3,1	68	1.000	13
F 440	100	100	101	17	40	70	3xM16	40	440	920	3	1	1	3,3	45	1.150	105
F 575	100	100	101	17	50	00	0.1410	60	_ _ _ _ _	1 000	0	-	4	4,3	90	1.050	140
C 575	120	120	78,5	17	50	90	3XIVI 16	50	575	1.220	3			4,8	99	850	140
F 725	140	140	101	47	50	110	0.1410	70	705	1 500	0	-	4	5,8	165	1.000	175
C 725	140	140	78,5	17	50	110	3XIVI 10	70	120	1.530	3			6,5	187	800	1/5
F 830	100		101			100								7,1	271	950	
C 830	160	160	78,5	17	60	120	3XIVI16	90	830	1.755	4	1		7,6	292	750	201
F 1120	140	143	134	26	55	100	3xM20	55	1.120	2.730	3	0,8	1	9,1	249	850	313
F 1370			134											11	401	800	
C 1370	158	163	110	26	60	120	3xM20	70	1.370	3.340	3	0,8	1	12	434	650	383
F 1580			134											14	656	750	
C 1580	180	183	110	26	70	140	3xM20	90	1.580	3.845	4	0,8	1	15	703	600	441
F 2010	158	163	155	31	60	115	5xM20	70	2.010	4.915	4	0,7	1	14	484	750	563
		1							L			· · · ·					

*Guide value at average rpm.

R= Swing diameter at radial misalignment=0, M= numbers of threaded bores x bolt size, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_{τ} = Torsional stiffness, m= Mass, J= Moment of inertia, F= bolt circle diameter

Ordering example:

F 265.55

Semiflex Standard, size 265, flange mounting version

Ordering example:

C 265.55

Semiflex Compact Plus, size 265, flange mounting version

6

Hub version 5 - Hub for flanging

Σ 0d

L

Standard F

Ø \Box Ъ 6 \bigcirc ϕd^{H7}

Specifications

 \geq

									lor	que	M	Isalignmer	nt				
Size	D	R	L	L ₁	d	F	Μ	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	C _T
	mm	mm	mm	mm	mm	mm		mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
F 2390	100	102	155	21	70	105	5×M20	00	2 200	E 955	4	0.7	-1	17	795	700	671
C 2390	100	103	127	31	70	155	5XIVI20	90	2.390	5.655	4	0,7	I	18	851	550	071
F 2700	200	202	155	21	00	150	5×M20	105	2 700	6 600	5	0.5	-1	21	1.214	650	756
C 2700	200	203	127	31	00	150	5XIVI20	105	2.700	0.000	5	0,5	I	22	1.299	500	750
F 4220	200	200	196	33	80	150	5xM24	100	4.220	11.300	5	0,3	2	23	1.339	600	1.295
F 5620	250	250	196	22	100	200	EVM04	140	5 620	15.050	6	0.2	0	34	3.209	550	1 705
C 5620	230	200	152	33	100	200	JXIVIZ4	140	5.020	15.050	0	0,3	2	37	3.499	450	1.725
F 7040	200	200	196	22	160	250	EVM04	100	7.040	10 0 / 0	6	0.2	0	42	6.238	500	0.150
C 7040	300	300	152	33	100	230	JXIVIZ4	190	7.040	10.040	0	0,3	2	47	7.064	400	2.159
F 7500	300	300	155	31	150	260	7xM24	150	7.500	18.800	6	0,2	1	48	5.900	400	2.120
F 9750	350	350	155	31	150	280	7xM30	150	9.750	24.100	6	0,2	1	64	10.700	400	2.760
F 14500	350	350	196	33	180	280	7xM30	180	14.500	38.000	6	0,2	2	66	12.500	300	4.350

 $otin \mathbf{R}$

*Guide value at average rpm.

R= Swing diameter at radial misalignment=0, M= numbers of threaded bores x bolt size, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_{τ} = Torsional stiffness, m= Mass, J= Moment of inertia, F= bolt circle diameter

Ordering example:

F 2390.55 Semiflex Standard, size 2390, flange mounting version Ordering example:

C 2390.55

Semiflex Compact Plus, size 2390, flange mounting version

Hub version 6 - Hub

Standard F

Compact Plus C

Specifications

								lor	que	M	isalignmer	nt				
Size	D mm	R mm	L mm	L ₁ mm	P mm	d _м mm	d _{max} mm	T _{ĸN} Nm	T _{ĸmax} Nm	radial* mm	angular °	axial mm	m kg	J kg cm ²	n _{max} 1/min	C _T kNm/rad
E 45	50	50	60	10	50	00	06	45	71	0			0.5	0	0.500	0
F 45	50	52	00	10	50	22	20	40	11	2	1	I	0,5	2	2.500	0
F 70	70	72	68	20	70	42	40	70	112	2	1	1	1	8,4	2.100	13
C 70			59										1,1	8,9	1.700	
F 230	90	94	104	27,5	56	50	40	230	460	2	1	1	2,2	23,6	1.450	53
C 230			88	/-		46							2,3	25,4	1.150	
F 265	100	104	104	27.5	65	55	40	265	530	2	1	1	2,6	34,7	1.350	61
C 265	100	104	88	21,0	00	00	40	200	500	2			2,6	37,2	1.100	01
F 320	100	104	104	07.5	70	70	50	220	625		1	-	3,6	70,4	1.250	70
C 320	120	124	88	27,5	10	10	50	320	035	3			3,5	73,9	1.000	13
F 440	100	100	143	38	53	40	32	440	920	3	1	1	4	50	1.150	105
F 575	100	100	143	0.0	70	60	45		1 000	0	-	-	5,2	99	1.050	140
C 575	120	120	120,5	30	70	50	45	575	1.220	3			6,6	108	850	140
F 725	140	140	149	44	0.5	70	50	705	1 500	0	-	-	7	183	1.000	175
C 725	140	140	126,5	41	85	70	50	725	1.530	3			7,7	205	800	1/5
F 830			163										9,1	303	950	
C 830	160	160	140,5	48	90	90	50	830	1.755	4	1	1	9,5	324	750	201
F 1120	140	143	162	40	77	55	45	1.120	2.730	3	0,8	1	10,5	270	850	313
F 1370	450	100	170			70	50	4.070	0.040				13	435	800	000
C 1370	158	163	146	44	90	70	50	1.370	3.340	3	0,8	1	13	460	650	383
F 1580			182										16	710	750	
C 1580	180	183	158	50	90	90	50	1.580	3.845	4	0,8	1	17	755	600	441
F 2010	158	163	185	46	85	70	50	2.010	4.915	4	0,7	1	15,5	520	750	563
F 2390			195										19	850	700	
C 2390	180	183	167	51	90	90	50	2.390	5.855	4	0,7	1	20	910	550	671
L		1						L						L		

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN}= Nominal torque, T_{Kmax}= Maximum torque, C_T= Torsional stiffness, m= Mass, J= Moment of inertia

Ordering example:

F 70.66 Ø16 Ø20

Semiflex Standard, size 70, bore 16 mm, 20 mm

Ordering example:

C 70.66 Ø16 Ø20

Semiflex Compact Plus, size 70, bore 16 mm, 20 mm

Hub version 7: Also optionally available as a short-length variant with internal hub (hub shape 7). Please contact us.

Hub version 1 - Clamp hub

Dynamic D

Specifications

								Tore	que	N	lisalignme	nt				
Size	D	R	L	L ₁	Y	Μ	d _M	T _{KN}	T _{Kmax}	radial*	angular	axial	m	J	n _{max}	C _T
	mm	mm	mm	mm	mm		mm	Nm	Nm	mm	0	mm	kg	kg cm ²	1/min	kNm/rad
D 40	EG	61 5	52	12	21	M5	25	40	00	1.0	-1	0.5	0,26	1,2	2 500	0
D 45	50	01,5	58	15	19,3	M6	25	40	00	1,2	1	0,5	0,29	1,3	2.000	5
D 180		77	59	10	05	25 M8 -	32 40	100	300	1,5	0,5	0,5	0,63	5,1	5.000	34
D 185			67	10	20			180					0,59	5		

*Guide value at average rpm.

Mass of coupling size measured at max. bore diameter R= Swing diameter at radial misalignment=0, M= Size of screw, T_{KN} = Nominal torque, T_{Kmax} = Maximum torque, C_{T} = Torsional stiffness, m= Mass, J= Moment of inertia

Bore diameters

Size	d mm											
	12	14	16	18	20	22	24	25	28	30	32	35
D 40												
D 45	-	=	=	-	-	-	-	-				
D 180, D 185												

Combinations of different bore diameters are possible.

Ordering example:

Semiflex Dynamic, size 40, bore 16 mm, 20 mm

Installation instructions

Hub form 1 and 2 Versions with clamping hub and split clamping hub

Check shaft connection dimensions (also feather key dimensions) and tolerances. The bored holes are delivered in Fit H8 for the Standard and Compact Plus designs and in F9 for the Dynamic design.

The clamping screws must be tightened to the recommended driving torque according to size (see below). The following table shows the recommended tightening torques for all Semiflex Standard, Semiflex Compact Plus and Semiflex Dynamic product lines in hub forms 1 and 2 - clamping hub and split

clamping hub.

For hub form 2 (split clamping hub), the screws must be tightened evenly (clamping slot on both sides should sit at the same distance).

T	ур	Size of screw	Tightening torque (Nm)			
Standard Compact Plus						
F 45		M6	15			
F 70	C 70	M8	36			
F 230	C 230	M10	72			
F 265	C 265	M12	125			
F 320	C 320	M12	125			
F 440		M12	125			
F 575	C 575	M12	125			
Dyn	amic					
D	40	M5	6			
D	45	M6	8			
D	180	M8	24			
D	185	M8	24			

Hub form 3

Versions with clamping hubs

Bores are supplied in fit F7. In the clamping hub designs, the torque is transmitted frictionally from the

coupling via the outer ring and the the outer ring and the coupling. inner ring onto the shaft. The clamping screws enable the required pressure. In its untensioned state, a defined gap is present between

T	yp	Size of screw	Tightening torque (Nm)		
Standard	Compact Plus				
F 230	C 230	M8	29		
F 265	C 265	M8	29		
F 320	C 320	M8	29		
F 440		M8	29		
F 575	C 575	M10	58		
F 725	C 725	M12	100		
F 830	C 830	M12	100		
F 1120		M12	100		
F 1370	C 1370	M12	100		
F 1580	C 1580	M12	100		
F 2010		M12	100		
F 2390	C 2390	M16	240		
F 2700	C 2700	M16	240		
F 4220		M16	240		
F 5620	C 5620	M16	240		
F 7040	C 7040	M16	240		
F 7500		M16	240		
F 9750		M20	470		
F 14500		M20	470		

The locking assembly version offers the possibility of a radial mounting for applications where shafts cannot be moved axially. The distance between both shafts should correlate with the nominal length plus ½ of the axial misalignment capacity of the coupling (ge-

Hub form 5

Versions for flanging

Screw the coupling with the mounting flanges fixed to the hubs manufactured by the client or other components. Tighten flange fastening screws with a torque wrench to the torque specified by the client. nerally 0,5 mm).

At first please mount both locking assemblies with insert screws on both shafts. In second step please position the Semiflex radially between both shafts and assemble with both locking assemblies.

Before tighten the screws please

Hub form 6 and 7 Hub and inner hub

Bores are supplied in fit H7. A fixed shaft seat is desirable to ensure a low backlash shaft connection. The axial compressive forces occurring during assembly must be kept away from the coupling. For this purpose, axial support for the ensure that the coupling is in final position and adjust the overall length of the coupling.

Tighten the screws with several turns until the full tightening torque has been achieved.

coupling elements is recommended. Alternatively, the hubs can be separately mounted on the shafts and the coupling can then be fitted together cleanly.

Semiflex coupling solutions

In addition to standard products, SCHMIDT-KUPPLUNG manufactures industry-specific versions and application-specific coupling solutions in the Semiflex range. These are, for example:

With simultaneous overload protection

Semiflex in combination with free play, load-separating safety coupling. Offer precise overload protection with simultaneous high displacement compensation.

Special ambient conditions

Versions with specially tailored surface coatings, or completely made of stainless steel. In addition, tailored slide bearings run the coupling elements, which are used, for example, in the pharmaceutical industry.

Application-specific hub designs

Designs as "pivotal clamping screw unit" with a so-called hinged lid, fitted for the much more rapid changing of different printing rollers or with special clamping hubs to accommodate extra-large shaft diameters or with a gear hub, and much more.

Application with additional axial forces

Axially fixed versions to be used, for example, for the additional precise transmission of high axial forces, in case of lateral adjusting movements of printing rollers.

Special structural lengths

Versions with tailored, customer-specific length dimensions for mounting in a predefined installation space. Here: Version with one-side, customer-specific, tailored-length split clamp hub, and with internal hub on the output side.

Extremely small installation conditions

Versions with custom lengths or designed as a so-called 1/3-coupling for the direct integration of the functional system in extremely small custom installation spaces.

Plug-blind assembly

Semiflex for quick plug-blind assembly, if this acts as a functional interface between removable workstations and the drive unit. The coupling enables a fast conversion process without tools.

Applications

We speak your language

Every industry has its own peculiarities. Understanding this is a key task for the successful implementation of industry-specific applications.

For nearly 50 years, the release of countless applications in various

industries has given us the experience and know-how to implement, jointly with our customers, the most suitable and efficient coupling solution for each application. No matter whether you deal with assembly or exposure systems for PCB production, medical technology or process engineering, forming or machine tools: We speak your language!

The optimal solution for every application

Paper machines

A paper machine is normally made up of different process stages. One of these is sieving, in which the actual sheet forming process takes place. For the strength and uniformity of paper quality, it is important that fibres are not only longitudinally oriented but also deposited in a mixed fibre orientation on the sieve. This is obtained via transverse motion and by shaking the breast roll and thus the sieve. In the drive of this shaking unit, the tension hub version of the Semiflex coupling provides for precise eccentric movement and thus optimal fibre orientation as well as final product quality.

Handling and conveyor technology

In conveyor technology, so-called roller conveyors have a key role in the transport process. They are used for unloading different-weight piece goods. Thanks to a sort of modular system, they can be flexibly adapted to any transport situations. In the process, piece goods are carried to the conveying direction via transversely arranged transport rollers. For driving conveyor rollers, particularly space-saving Semiflex Compact Plus couplings are used in systems. Additionally equipped with clamp hubs in half-shell version, and therefore radially mountable, individual modules can be connected to a modular system and combined to overall conveyor systems. The high radial displacement possibility of the Semiflex coupling also ensures the adjustment of individual sub-modules conveying level.

Vacuum coating systems

In the thin film process, the most diverse materials are applied very thin - mostly metallic - layers under vacuum conditions.

These include the vacuum coating of special glasses, displays, flatscreen monitors, photovoltaics and special films.

To produce them, so-called roll-toroll systems are used. Namely, the film to be processed is stored on a roll and unwound via a winding drive for the vacuum coating process, and rewound on completion. In this continuous production process, the support material is provided with a very thin metallic layer. The Semiflex coupling in the vacuum version provides for a precise and uniform coating process thanks to its absolute synchronisation despite the compensation of occurring displacements.

Machine tools

Gear machines are continuously working gear machines for manufacturing straight or slanted external or internal gears. In this case, the so-called dividing wheels are of great importance. They synchronise the cutting wheel and work wheel for the metal cutting process. In a CNC gear machine, the Semiflex coupling in backlash-free clamp hub version allows for the precise driving of this part of the wheel. Its compact design together with high radial displacement capacity thanks to the permanent infeed movement during work piece processing, play a major role under very confined installation conditions.

In this way, synchronisation is guaranteed despite high displacement - a crucial requirement for the precise operation of the dividing wheel.

Roller conveyors Vacuum thin-film coating Rotary transfer machines Embossing rollers Rollforming machines

27

Product Overview

Catalogue Controlflex

Catalogue Semiflex

Catalogue Schmidt-Kupplung

Catalogue Servoflex

Catalogue Loewe GK

Catalogue Omniflex

Contact

SCHMIDT-KUPPLUNG GmbH Wilhelm-Mast-Straße 15 38304 Wolfenbüttel

Tel.: 05331 9552 500 Fax: 05331 9552 552

eMail: info@schmidt-kupplung.com Web: www.schmidt-kupplung.com